Category: The Beginning of Infinity

Allen Lane: 2011.

The role of explanation in science

In general, when theories are easily variable in the sense I have described, experimental testing is almost useless for correcting their errors. I call such theories bad explanations. Being proved wrong by experiment, and changing the theories to other bad explanations, does not get their holders one jot closer to the truth.

Because explanation plays this central role in science, and because testability is of little use in the case of bad explan­ations, I myself prefer to call myths, superstitions and similar theories unscientilic even when they make testable predic­tions. But it does not matter what terminology you use, so long as it does not lead you to conclude that there is something worthwhile about the Persephone myth, or the prophet’s apocalyptic theory or the gamblers delusion, just because it is testable. Nor is a person capable of making progress merely by virtue of being willing to drop a theory when it is refuted: one must also be seeking a better explanation of the relevant phenomena. That is the scientific frame of mind. …

The quest for good explanations is, I believe, the basic regulating principle not only of science, but of the Enlightenment generally. It is the feature that distinguishes those approaches to knowledge from all others, and it implies all those other conditions for scientific progress I have discussed: It trivially implies that prediction alone is insufficient. Somewhat less trivially, it leads to the rejection of authority, because if we adopt a theory on authority, that means that we would also have accepted a range of different theories on authority. And hence it also implies the need for a tradition of criticism. It also implies a methodological rule – a criterion for reality – namely that we should conclude that a particular thing is real if and only if it figures in our best explanation of something. [22-3]

What a problem is

The essence of experimental testing is that there are at least two aparently viable theories known about the issue in question, making conflicting predictions that can be distinguished by the experiment. Just as conflicting predictions are the occasion for experiment and observation, so conflicting ideas in a broader sense are the occasion for all rational thought and inquiry. For example, if we are simply curious about something, it means that we believe that our existing ideas do not adequately capture or explain it. So, we have some criterion that our best existing explanation fails to meet. The criterion and the existing explanation are conflicting ideas. I shall call a situation in which we experience conflicting ideas a problem.

The example of a conjuring trick illustrates how observations provide problems for science – dependent, as always, on prior explanatory theories. For a conjuring trick is a trick only if it makes us think that something happened that cannot happen. Both halves of that proposition depend on our bringing quite a rich set of explanatory theories to the experi­ence. That is why a trick that mystifies an adult may be uninteresting to a young child who has not yet learned to have the expectations on which the trick relies. Even those members of the audience who are incurious about how the trick works can detect that it is a trick only because of the explanatory theories that they brought with them into the audi­torium. Solving a problem means creating an explanation that does not have the conflict. [16-17]

Enlightenment needs criticism

The scientific revolution was part of a wider intellectual revolution, the Enlightenment, which also brought progress in other fields, especially moral and political philosophy, and in the institutions of society. Unfortunately, the term ‘the Enlightenment’ is used by historians and philosophers to denote a variety of different trends, some of them violently opposed to each other. What I mean by it will emerge here as we go along. It is one of several aspects of ‘the beginning of infinity’, and is a theme of this book. But one thing that all conceptions of the Enlightenment agree on is that it was a rebellion, and specifically a rebellion against authority in regard to knowledge.

Rejecting authority in regard to knowledge was not just a matter of abstract analysis. It was a necessary condition for progress, because, before the Enlightenment, it was generally believed that everything important that was knowable had already been discovered, and was enshrined in authoritative sources such as ancient writings and traditional assumptions. Some of those sources did contain some genuine knowledge, but it was entrenched in the form of dogmas along with many falsehoods. So the situation was that all the sources from which it was generally believed knowledge came actually knew very little, and were mistaken about most of the things that they claimed to know. And therefore progress depended on learning how to reject their authority. This is why the Royal Society (one of the earliest scientific academies, founded in London in 1660) took as its motto ‘Nullius in verba’, which means something like ‘Take no one’s word for it.’

However, rebellion against authority cannot by itself be what made the difference. Authorities have been rejected many times in history, and only rarely has any lasting good come of it. The usual sequel has merely been that new authorities replaced the old. What was needed for the sustained, rapid growth of knowledge was a tradition of criticism. Before the Enlightenment, that was a very rare sort of tradition: usually the whole point of a tradition was to keep things the same.

Thus the Enlightenment was a revolution in how people sought knowledge: by trying not to rely on authority. That is the context in which empiricism – purporting to rely solely on the senses for knowledge – played such a salutary historical role, despite being fundamentally false and even authoritative in its of conception of how science works.

One consequence of this tradition of criticism was the emergence of a methodological rule that a scientific theory must be testable (though this was not made explicit at first). That is to say, the theory must make predictions which, if the theory were false, could be contradicted by the outcome of some possible observation. Thus, although scientific theo­ries are not derived from expericence, they can be tested by experience – by observation or experiment. [12-13]

Liberating science from authority

Empiricism never did achieve its aim of liberating science from authority. It denied the legitimacy of traditional author­ities, and that was salutary. But unfortunately it did this by setting up two other false authorities: sensory experience and whatever fictitios process of ‘derivation’, such as induction, one imagines is used to extract theories from experience.

The misconception that knowledge needs authority to be genuine or reliable dates back to antiquity, and it still prevails. To this day, most courses in the philosophy of knowledge teach that knowledge is some form of justified, true belief, where ‘justified’ means designated as true (or at least ‘probable’) by reference to some authoritative source or touch­stone of knowledge. Thus ‘how do we know … ?’ is transformed into ‘by what authority do we claim … ?’ The latter question is a chimera that may well have wasted more philosophers’ time and effort than any other idea. It converts the quest for truth into a quest for certainty (a feeling) or for endorsement (a social status). This misconception is called justificationism.

The opposing position – namely the recognition that there are no authoritative sources of knowledge, nor any reliable means of justifying ideas as being true or probable – is called fallibilism. To believers in the justified-true-belief theory of knowledge, this recognition is the occasion for despair or cynicism, because to them it means that knowledge is un­attainable. But to those of us for whom creating knowledge means understanding better what is really there, and how it really behaves and why, fallibilism is part of the very means by which this is achieved. Fallibilists expect even their best und most fundamental explanations to contain misconceptions in addition to truth, and so they are predisposed to try to change them for the better. In contrast, the logic of justificationism is to seek (and typically, to believe that one has found) ways of securing ideas against change. Moreover, the logic of fallibilism is that one not only seeks to correct the misconceptions of the past, but hopes in the future to find and change mistaken ideas that no one today questions or finds problematic. So it is fallibilism, not mere rejection of authority, that is essential for the initiation of unlimited know­ledge growth – the beginning of infinity. [8-9]

How do we know?

How do we know? One of the most remarkable things about science is the contrast between the enormous reach and power of our best theories and the precarious, local means by which we create them. No human has ever been at the surface of a star, let alone visited the core where the transmutation happens and the energy is produced. Yet we see those cold dots in our sky and know that we are looking at the white-hot surfaces of distant nuclear furnaces. Physically, that experience consists of nothing other than our brains responding to electrical impulses from our eyes. And eyes can detect only light that is inside them at the time. The fact that the light was emitted very far away and long ago, and that much more was happening there than just the emission of light – those are not things that we see. We know them only from theory. [3]

Science: learning from experience

But, in reality, scientific theories are not ‘derived’ from anything. We do not read them in nature, nor does nature write them into us. They are guesses – bold conjectures. Human minds create them by rearranging, combining, altering and adding to existing ideas with the intention of improving upon them. We do not begin with ‘white paper’ at birth, but with inborn expectations and intentions and an innate ability to improve upon them using thought and experience. Expe­rience is indeed essential to science, but its role is different from that supposed by empiricism. It is not the source from which theories are derived. Its main use is to choose between theories that have already been guessed. That is what ‘learning from experience’ is. [4]